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Administration of anesthetic agents fundamentally shifts the responsibility for maintenance of homeostasis from the
patient and their intrinsic physiological regulatory mechanisms to the anesthesiologist. Continuous delivery of oxygen
and nutrients to the brain is necessary to prevent irreversible injury and arises from a complex series of regulatory
mechanisms that ensure uninterrupted cerebral blood flow. Our understanding of these regulatory mechanisms and the
effects of anesthetics on them has been driven by the tireless work of pioneers in the field. It is of paramount importance
that the anesthesiologist shares this understanding. Herein, we will review the physiological determinants of cerebral
blood flow and how delivery of anesthesia impacts these processes.
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Introduction

Utilizing 10-fold more oxygen than would be predicted
based on its weight the human brain is one of the most
energetically dense organs in the body.! This feature is
unique to humans and, in part, is a consequence of the
complexity of tasks, such as language, tool use, and
social relationships, that the organ performs.>® As the
brain has relatively little capacity for energy storage, a
continuous supply of oxygen and nutrients must be
delivered by uninterrupted cerebral blood flow (CBF).*
Multifaceted physiological regulatory mechanisms of
CBEF exist to ensure that this process occurs throughout
the life of the organism. Disruption of CBF by disease,
trauma, or iatrogenic causes can give rise to profound
irreversible injury in the form of stroke.

Surgery is a form of controlled trauma that occurs
concurrently with the establishment of some type of
anesthesia. Neurosurgical interventions directly trau-
matize vulnerable tissues. Anesthetic agents either dir-
ectly impact the primary functions of the brain and
CBF secondarily and/or indirectly alter the hemo-
dynamic factors that contribute to CBF. It is para-
mount that the anesthesiologist be cognizant of these
effects to facilitate surgical procedures and to avoid
undue iatrogenic injury during the perioperative period.

In this review, we will discuss the physiological
mechanisms responsible for maintaining CBF

homeostasis and their interplay with anesthetic
agents. Special attention will be given to the contribu-
tions of Dr. Richard J Traystman, former editor-in-
chief of the Journal of Cerebral Blood Flow and
Metabolism, to our understanding of this field.

Physiological determinants of CBF

Prior to an examination of the effects of anesthetics on
CBF, we will review the physiological mechanisms that
define flow. Under conditions of normothermia and nor-
moxia, CBF must remain at 50-60 ml/100 g/min to meet
the metabolic demands of the functioning brain, with
women having slightly higher flow rates.>® Reserve
blood flow exists to a point, but ischemic injury generally
occurs once CBF drops below 22 ml/100 g/min, although
concurrent pathology such as traumatic brain injury
(TBI) or hypothermia can change this threshold.”
Regulation of CBF is the result of a host of complex
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and incompletely described intra- and inter-cellular sig-
naling events. The regulatory mechanisms that preserve
CBF can broadly be categorized into cerebral autoregu-
lation (CA), neurovascular coupling (NVC), and vaso-
motor reactivity (VMR).® These mechanisms will be
reviewed here in brief; for additional details the reader
is directed to dedicated reviews of the subject.” '> While
categorization of these regulatory mechanisms as dis-
crete entities provides a useful conceptual framework
for this discussion, it should be recognized that signifi-
cant overlap exists between these mechanisms.

Cerebral autoregulation

In response to any number of extrinsic and intrinsic sti-
muli, systemic blood pressure can rise or fall dramatically
on a timeframe of seconds to minutes to hours, days, and
years. Autoregulation of blood flow exists to ensure that
perfusion of vital organs remains intact and stable across
the dynamic range of pressures the vascular bed is
exposed to. CA can broadly be defined as a proportional
change in cerebral vascular resistance in response to
changes in perfusion pressure to maintain a constant
blood flow (Figure 1, blue inlay)."? Although the result
of the processes that give rise to CA is measurable in
clinical and laboratory settings, a full understanding of
the processes themselves has remained elusive.

The range of mean arterial pressure (MAP) the CA
mechanism can respond to was first described in
humans by Lassen in 1959. In his seminal work,
Lassen reviewed previous reports of CBF measured in
376 different individuals at 11 different MAP states
which were established by normal physiology, adminis-
tration of vasoactive agents, or systemic disease.'*
From this work, the “autoregulation curve” was gen-
erated, which depicts a plateau region wherein CBF
is stable across an MAP range of ~50-160mmHg
(Figure 2(a)). Since its first inception, the nature of
the autoregulation curve has been used to guide intra-
individual clinical management of patients. This prac-
tice assumes that the static inter-individual continuum
reported by Lassen can be applied to the physiological
experience of singular patients.

In the last three decades with the advent of non-
invasive methodologies, such as transcranial doppler
(TCD) ultrasonography which allows for the measure-
ment of CBF velocity in real time, the validity of this
assumption has been called into question. This technol-
ogy has made it possible to evaluate the intra-individual
relationship between CBF and MAP. Ultilizing
technology which allows for real-time evaluation of
the CBF in singular individuals across a range of sys-
temic blood pressures an autoregulatory curve quite
unlike Lassen’s has been described. Analysis of individ-
ual static CA relationships from multiple studies

indicate that increases in cerebral vascular resistance
provide effective CA when systemic blood pressure is
increased in most individuals, whereas the decreases in
cerebral vascular resistance during decreases in MAP
are usually insufficient to maintain CBF perfectly con-
stant (Figure 2(b))."”

Evaluation of CBF in real time has also revealed that
cerebrovasculature can respond rapidly to fluctuations
in perfusion pressure and that these adaptations persist.
This observation has led to the development of the con-
cept of dynamic CA, i.e. changes in CBF occurring in
response to MAP alteration over a timeframe of sec-
onds to minutes. Dynamic CA is in contrast to static
CA which arises over minutes to hours to days.'® When
a dynamic CA paradigm is used to generate an intra-
individual autoregulatory curve, a frequency-dependent
narrow plateau region is observed (Figure 2(c)).'” The
significance of this observation to the practice of anes-
thesiology is unknown, but with the availability of
non-invasive technologies which allow for real-time
monitoring of CBF surrogates, it is now possible to
perform the clinical studies necessary to make this
determination.

Application of CBF-surrogate monitoring in real time
to evaluate CA may be of interest to anesthesiologists
and intensivists during states of suspected neurological
stress due to iatrogenesis or disease. During non-pulsa-
tile cardiopulmonary bypass (CPB) wherein the time-
domain fluctuation of MAP is reduced from seconds
to minutes, it has been found that the intra-individual
lower limit of the CA is incredibly variable and unpre-
dictable."® Further, hemodynamic management during
CPB guided by CBF-surrogate monitoring may result
in a reduction in injury.'” Additionally, application of
the technology has revealed that CA is preserved during
hypothermia.*

Acute regulation of vascular tone generally is
mediated by the autonomic nervous system (ANS);
however, the contribution of the ANS to CBF and
CA is obscure. Cerebral vasculature is known to be
highly innervated by the ANS, and postsynaptic adren-
ergic receptors are present on vascular smooth
muscle.”! While the presence of these elements would
suggest that the ANS regulates CBF, early work by
Traystman and Rapela demonstrated that direct stimu-
lation of the stellate ganglion produces minimal reduc-
tion of CBF.?? Similarly, denervation does not alter
resting CBF and only modestly reduces the upper
limit of the autoregulatory curve.? Further, both vaso-
constriction and vasodilation have been observed fol-
lowing direct application of catecholamines to isolated
cerebral artery preparations.”* 2° While controversial,
an emerging consensus is that the contribution of the
ANS to CA is minimal in comparison to the intrinsic
mechanisms which establish cerebral vascular tone.” !
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Figure 1. Summary of the effects of anesthetic agents on global oxidative-metabolism (GOM) and cerebral blood flow (CBF) as well
as the endogenous regulatory mechanisms such as cerebral autoregulation (CA), vasomotor reactivity (VMR) and neurovascular

coupling (NVC). See text for additional details.
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Figure 2. Evolving understanding of the relationship between MAP and CBF. (a) Inter-individual static cerebral autoregulatory curve

(adapted from Lassen'®). (b) Intra-individual static cerebral autoregulatory curve (adapted from Numan et a

autoregulatory curve (adapted from Tan'”).
MAP: mean arterial pressure; CBF: cerebral blood flow.

The intrinsic mechanisms of the cerebral vasculature
to set its myogenic tone have been intensely studied.
The vascular smooth muscle, endothelium, and neigh-
boring neurons and astrocytes, collectively referred to
as the neurovascular unit, play direct and modulatory
roles in establishing myogenic tone.*? Smooth muscle

1.'%). (c) Dynamic cerebral

of the cerebral vasculature is able to respond to trans-
mural pressure gradients to establish a resting tone
matched to the luminal pressure. Mechano-sensitive
transient receptor potential (TRP) channel family mem-
bers present throughout the cerebral vasculature have
recently been identified as a component of the pressure
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detection mechanism of the neurovascular unit.** These
channels respond to stretch and/or shear forces result-
ing in cation conductance ultimately leading to vaso-
constriction.***> The remaining components of the
neurovascular unit modulate the myogenic tone estab-
lished by the vascular smooth muscle.

In addition to mediating vasoconstriction by vascu-
lar smooth muscle, TRP channel activity on vascular
endothelium may lead to smooth muscle relaxation. In
isolated cerebral vascular endothelium, activation of
TRP channels results in the generation of nitric
oxide.*® Nitric oxide has long been recognized as one
of the endothelium-derived relaxation factors in the
cerebral vasculature. Following up on work performed
in small mammals, Traystman and his colleagues
demonstrated that inhibition of nitric oxide synthesis
results in increased cerebral vascular resistance and
decreased CBF in piglets and non-human primates.®’ "
Later work demonstrated similar activity in
humans.***! The endothelium is also a source of vaso-
dilatory  arachidonic  acid-derived prostanoids.*?
Inhibition of prostanoid production reduces regional
CBF and is synergistic with inhibition of nitric oxide
production.* These finding have led to the appreci-
ation for the role of endothelium-derived nitric oxide
and prostanoids in establishing the basal tone of the
cerebral vasculature.

Astrocytes and neurons also modulate the tone of
surrounding vasculature. Astrocytes are a source of
arachidonic acid-derived epoxyeicosatrienoic acids
which when released diffuse to wvascular smooth
muscle and mediate vasodilation through membrane
hyperpolarization.** Neurons also produce and release
vasodilatory prostaglandins and nitric oxide.*> Tt
should be recognized though that additional, as yet
incompletely described, mechanisms must also contrib-
ute to CA. Systemic application of calcium channel
antagonist which negates ion channel-dependent regu-
lation of myogenic tone does not ablate compensation
for orthostatic perturbations of blood pressure.*® Also,
disruption of the endothelium secondary to chronic

disease which would inhibit mechanical signal
transduction does not impair pressure-dependent
autoregulation.*’

Neurovascular coupling

NVC describes the modulation of regional CBF to meet
the metabolic demands of neural activity (Figure 1,
pink inlay). This process occurs at the level of the cere-
bral microvasculature of plial arterioles outside the pia
mater and penetrating parenchymal arterioles. The
mechanism by which the tone of these vessels is
matched to the needs of the surrounding neurons is
complex and involves all members of the neurovascular

unit. In response to excitatory glutamatergic inputs,
active neurons release nitric oxide which diffuses to
nearby vascular smooth muscle and promotes dila-
tion.* Adenosine produced from extracellular conver-
sion of neuron- and astrocyte-derived ATP diffuses to
vascular smooth muscle and induces changes in vascu-
lar tone.* % Neuron-derived prostaglandins also influ-
ence vascular tone.’>>* Prostaglandin E2 is produced
by active pyramidal neurons and acts on EP2 and EP4
receptors present on cerebral vascular smooth muscle
resulting in vasodilation.”® Additionally, GABAergic
interneurons release numerous vasoactive mediators
directly onto vascular smooth muscle.”® Metabolically
active astrocytes which envelope the parenchymal
arterioles also mediate the tone of the vascular
smooth muscle.” Astrocytes are a source of vasodila-
tory epoxyeicosatrienoic acids released during cortical
activation.””® Astrocytes also modulate vascular tone
through release of vasodilatory K™ and Ca®" to the
perivascular space.’®" Finally, in response to neuronal
activity, the endothelium itself propagates vasodilatory
signals throughout the vasculature of active cortical
regions.®! Collectively, these mechanisms allow for
modulation of CBF that is temporally and spatially
correlated with neuronal activity. Vessels surrounding
active neurons to a distance of 0.5-1 mm respond with-
in~1s to the onset of neuronal activity to modulate
CBF.”

Vasomotor reactivity

The cerebral vasculature tone is influenced by changes
in arterial blood CO, and, to a lesser extent, O, tension
through a process referred to here as VMR (Figure 1,
green inlay).®> VMR to CO, is stronger in the brain
compared to other organs.** Both plial arterioles and
large caliber cerebral vessels respond.®> Alteration of
cerebral vascular tone in response to changes in
PaCO, is an intrinsic property of the vasculature and
occurs independent of adrenergic activity despite exten-
sive innervation by the sympathetic nervous system.®
The mechanism responsible for cerebral vasodilation
and vasoconstriction in response rising and falling
P,CO,, respectively, is incompletely understood.
Nitric oxide production is dispensable for VMR.®’
Early studies indicated that alteration of extracellular
pH due to diffusion of CO, out of or into the vascula-
ture is the dominant mechanism of VMR to CO,.%%¢°
However, more recent work suggests that transient
changes in vascular smooth muscle intracellular pH
also can modulate the response.”’ This mechanism
establishes a roughly linear relationship between CBF
and acute P,CO; changes with a 1-6% change in CBF
for every 1 mmHg across a range of 20-80 mmHg.”'
Adaptation to chronic alteration of P,CO, occurs and
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CBF will tend to normalize over a 6-8-h period.””
Acute changes in CO, tension impact the CA mechan-
ism with loss of eucapnia, leading to a narrowing of
the CA plateau.”> While impaired VMR to changes
in P,CO, is not predictive of stroke risk, it does
correlate with increased mortality.”*”> This may indi-
cate that impaired VMR is a symptom of systemic vas-
cular disease which itself is the most detrimental
pathology.

To guard against injury due to hypoxia or hyperoxia
CBF is modulated such that oxygen delivery expressed by
the product of CBF and CaO, is roughly constant over
PaO, range of 30-430mmHg.”® Vasodilation occurs
independent of peripheral chemoreceptors and may be
accompanied by a small increase in CMRO,, although
not all studies detect this increase.”®”” Under hypoxic
conditions, the hypocapnic cerebral vasoconstriction
activity is attenuated.”® This prevents ischemic injury
from arising due to hyperventilation-induced hypocapnia
associated with hypoxic ventilatory drive.

Anesthetic agents and CBF

Anesthetic agents affect the dynamics of the cerebral
vasculature through direct effects on the vessels as
well as modulation of the endogenous regulatory mech-
anisms (Figure 1). In addition to impacting the delivery
of oxygen and nutrients to metabolically active neu-
rons, alteration of cerebral vessel dynamics by anes-
thetic agents can influence the tissue composition
encountered during neurosurgical intervention. For
these reasons, the anesthesiologist must have a full
understanding of the effect of their interventions on
the cerebral vasculature. Additionally, intrinsic neuro-
protective properties have been attributed to anesthetic
agents. The concept of neuroprotective intervention
encompasses therapies which favorably shift the bal-
ance of cerebral oxygen supply and utilization as well
as those that prolong survival in ischemic states. Where
directly relevant neuroprotection will be discussed, in
addition, the interested reader is directed to other
recent reviews of this subject.”’ ®* Herein, emphasis is
placed on the inclusion of studies conducted using
human subjects as much as is made possible by the
availability of data.

Volatile anesthetics

Modern halogenated volatile anesthetics, such as iso-
flurane, sevoflurane and desflurane, are thought to
uncouple flow-metabolism matching. Suppression of
CMRO, is consistently observed in human and
animal models exposed to volatile anesthetics using a
host of assessment techniques. Assessment of CBF in
humans exposed to volatile anesthetics using TCD and

gas diffusion techniques generally report dose-depen-
dent increases.®* ®® However, magnetic resonance ima-
ging (MRI)-based assessments reveal minimal changes
in global CBF in humans, whereas non-human pri-
mates display dose-dependent increases.®” ®° Further,
conflicting data have been generated regarding sevo-
flurane with no change, increases and decreases in
CBF being observed.®® ™ The mismatch between
CBF and oxidative metabolism likely arises from the
direct effects of volatile anesthetics on cerebral vascular
resistance.

Vasodilation mediated by volatile anesthetics occurs
independent of the anesthetic depth and is the result of
a direct effect on the cerebral vasculature.”” Compared
to isoflurane, sevoflurane is a less potent cerebrovascu-
lar vasodilator when administered at MAC equivalent
doses.” A full understanding of the mechanism by
which vasodilation occurs is being derived. ATP-sensi-
tive Kt channels as well as increased production of
endothelium-derived nitric oxide and prostanoids
have been identified as being potentially modulated
by volatile anesthetics.*>?%-1%

CA remains intact during isoflurane and desflurane
administration at 1 MAC, but above 1.5 MAC CBF is
pressure-passive with respect to MAP.'°"12 However,
concurrent hypercapnia does induce blockade of CA
during administration of therapeutic doses of volatile
anesthetic.'” Conversely, hypocapnia restores CA
during supratherapeutic isoflurane administration.'®*
Sevoflurane at therapeutic doses has been reported to
narrow the plateau region of the autoregulatory
curve.'”> VMR is preserved during isoflurane adminis-
tration unless supratherapeutic doses are adminis-
tered.'% Conversely, vasodilation due to hypercapnia
as well as vasoconstriction due to hypocapnia are
blunted by sevoflurane.'"’

Volatile anesthetics have long been postulated to act
as neuroprotective agents in the setting of cerebral
hypoperfusion. Investigations in small animals and
non-human primates suggest that use of volatile anes-
thetics could limit injury following experimentally
induced ischemia.”® Retrospective clinical studies have
produced data to suggest the same. Isoflurane use
during carotid endarterectomy appears to decrease the
critical CBF below which electroencephalogram (EEG)
evidence of injury arises.'” Similarly, desflurane
administration preserves cerebral oxygenation during
temporary cerebral artery clipping.'® However, in spe-
cific circumstances such as the neonatal period, toxicity
attributable to volatile anesthetics has been described in
preclinical trials."''""" In the absence of results
from prospective randomized controlled trials, it is pre-
mature to conclude that sufficient evidence exists to
support the notion that volatile anesthetics are neuro-
protective or neurotoxic agents in humans.
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Nitrous oxide

Nitrous oxide is the oldest anesthetic gas still in regular
use. When inhaled, it produces dose-dependent anal-
gesia, dissociative amnesia, anxiolysis, and somnolence.
Due to its low potency at atmospheric pressures, a state
general anesthesia cannot be induced by nitrous oxide
alone. Under hyperbaric conditions, general anesthesia
can be achieved by nitrous oxide alone; however, this is
associated with significant hemodynamic derange-
ment."'> Numerous biological targets for nitrous
oxide have been described with antagonism of the
NMDA receptor thought to be responsible for its anes-
thetic properties.''® The efficacy of nitrous oxide as part
of the anesthesia provided to neurologically vulnerable
patients has been contested.

Rapid agent elimination following surgical interven-
tion is desirable to allow for early clinical assessment in
the postoperative period, but this feature of nitrous
oxide is not widely accepted to outweigh the potential
risks associated with its use.''* Classical teaching is that
nitrous oxide increases CBF, CMRO,, intracranial
pressure (ICP), and moves into the potential space cre-
ated by surgically induced pneumocephalus or could
worsen venous air embolism and should therefore be
avoided. Data supporting this teaching come from stu-
dies to model the use of nitrous oxide as a MAC spar-
ing agent in general anesthetic states established by
other agents. The varying nature of these models may
give rise to misunderstanding of the intrinsic activity of
nitrous oxide. When administered as a single agent,
nitrous oxide results in increased CBF and no change
or decreased CMRO,."">" 1" However, when used as an
adjunct to other anesthetics, the addition of nitrous
oxide has been reported to enhance, blunt, or have no
effect on CBF and CMRO,."**"'?7 Further complicat-
ing this picture is the observation that the temporal
relationship between agent exposure and outcome is
inconsistent.'”® VMR remains intact when nitrous
oxide is administered alone or in combination with
other anesthetic agents.'®

Data on outcomes associated with administration of
nitrous oxide to neurologically vulnerable patients
come from retrospective analysis of the IHAST
trial.'*® When nitrous oxide was used as part of general
anesthesia provided to patients undergoing surgical
repair of ruptured subarachnoid hemorrhage, there
were no long-term neurological deficits attributable to
the drug.'*' Subgroup analysis of patients who under-
went temporary occlusion of major cerebral vessels as
part of the surgical intervention did reveal an increase
in the occurrence of neurological deficits in the imme-
diate perioperative period associated with nitrous oxide
exposure; however, this association was no longer pre-
sent three months following surgery.'>® These results
have led to a renewed interest in the use of nitrous

oxide as part of the anesthesia provided during neuro-
surgical interventions.'?

Xenon

A noble gas naturally occurring at low concentration in
Earth’s atmosphere, 0.0875ppm, xenon been recog-
nized as an agent able to achieve general anesthesia
since the 1940s.'**'** The mechanism by which xenon
induces a general anesthetic state is believed to arise
from inhibition of NMDA receptors by tight associ-
ation with the glycine-binding site.'*'*® Xenon has
features of an ideal anesthetic including rapid induction
of and emergence from a general anesthetic state fol-
lowing initiation and discontinuation of administra-
tion, hemodynamic neutrality, and neuroprotective
properties.'3”1%® Scarcity, cost of production, and com-
petition with use in industrial applications all limit clin-
ical use of xenon.

Studies conducted to examine the effect of xenon on
CBF and CMRO, using rodent, porcine, and non-
human primate systems have produced conflicting
results. In an elegant study by Laitio et al., regional
CBF was measured in humans under general anesthesia
induced and maintained by 1 MAC of xenon alone. In
this study, adjunct remifentanil was used at the time of
intubation in response to signs of responsiveness to
laryngoscopy; however, a period of 10 remifentanil
half-lives was allowed to pass prior to measurement
of CBF by '"0O-H,O positron emission tomography
(PET) Laitio et al. found that areas of dense concen-
trations of soma, the cortex, cerebellum, and thalamus
experience an overall reduction in blood flow, whereas
structures arising from axon projections, white matter
tracts, had an increase in blood flow during xenon
administration.’®® In a follow-up study, this group
was able to confirm that reduction of CBF correlated
with reduction of CMRO,.'*’ These findings are largely
in concordance with those reported by Rex et al.!*!:!4?
The matched reduction in CBF and CMRO, induced
by xenon is in stark contrast to other NMDA receptor
antagonists, such as nitrous oxide and ketamine which,
as discussed above and below, increase CBF.

Propofol

Propofol is an intravenous anesthetic that achieves
dose-dependent sedation or general anesthesia. The
mechanism by which reduced consciousness occurs is
by a direct interaction between propofol and the
GABA receptor leading to potentiation of the recep-
tor activity."**'** Compared to volatile anesthetics
delivered at Bispectral Index (BIS)-equivalent equipo-
tent doses, propofol causes significant reduction of
CBF and similar decreases in CMRO,.!*>!%
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The mechanism by which CBF reduction occurs is
thought to arise from intact flow-oxidative metabolism
coupling as vasodilation is observed when propofol is
applied directly to vessels in in vitro preparations.'*
CA remains intact during propofol administration up
to doses of 200 pg/kg/min.'”> An early study using
equipotent doses of propofol and sevoflurane titrated
to BIS suggested that propofol blunts reactivity
VMR.'* However, recent studies using NIRS spectros-
copy have demonstrated that reactivity to hypocapnia
secondary to hyperventilation is similar when either
propofol or sevoflurane is used to maintain general
anesthesia.'#* 10

Evidence for neuroprotection that may be attribut-
able to propofol comes from the prospective SIESTA
and Goliath trials which suggest an association between
general anesthesia maintained with propofol and
improved neurological outcome following endovascu-
lar clot retrieval for stroke.'>''>? However, neither
trial was structured to investigate an agent-specific
effect, rather a state-specific effect, sedation versus gen-
eral anesthesia, was the primary comparison of interest
for these studies. A single agent-specific study exists
wherein propofol administration was titrated to burst
suppression on EEG during cardiac valve surgery; this
study failed to demonstrate improved neurological out-
comes following propofol administration. '
Interpretation of the significance of this study is diffi-
cult, as burst suppression is itself thought to give rise to
adverse neurological outcomes.'>* Additional prospect-
ive studies examining the administration of therapeutic
doses of propofol are likely indicated at this time.

Ketamine

Ketamine is a phenylcyclidine derivative that when
administered intravenously or intramuscular induces a
state of general anesthesia with preservation of respira-
tory drive. In the catecholamine-replete patient, keta-
mine induces a weak and transient release of
endogenous stores which counteracts the direct myo-
cardial depressant effect of the drug. While many
molecular targets for ketamine have been described,
inhibition of the NMDA receptor is thought to give
rise to its anesthetic properties. Enthusiasm for use of
ketamine in the neurologically compromised patient
was tempered by early preclinical reports of increased
CMRO, and small case series documenting elevated
ICP associated with its use.'>> ' However, recent stu-
dies conducted in human reveal that when used in con-
junction with usual modern anesthetic practices,
ketamine administration does not result in increased
ICP.'° Alteration of CMRO, in humans is minimal
and is likely a consequence of increased metabolite
supply rather than simply increased utilization.'¢!-'%2

In addition, a recent meta-analysis of available
human studies has demonstrated that ketamine admin-
istration increases CBF.'®® Ketamine-mediated increase
of CBF appears to arise from direct vasodilation of
medium cerebral vessels.'®* There is renewed interest
in ketamine use due to the neuroprotective properties
attributed to the drug. A full discussion of these proper-
ties is beyond the scope of this review; for additional
information the reader is directed to an excellent recent
review article on the subject.'’

Etomidate

Etomidate is an imidazole derivative synthesized in the
early 1970s and originally intended for use as an anti-
fungal agent prior to appreciation of its sedative-hyp-
notic effects. When administered as a single bolus or
continuous infusion, etomidate achieves sedation
through potentiation and direct activation of synaptic
and extrasynaptic GABA receptors.'® Unique among
anesthetic agents, administration of etomidate is not
associated with hemodynamic depression. Using
animal models of focal and global ischemia, reports
have described etomidate as having neuroprotective
properties.'®”!*® Etomidate administration to humans
has been shown to result in reductions of ICP, CBF,
and CMRO,.'® 17 Reduction of CBF is speculated to
arise secondarily from reduction of CMRO, as well as
direct vasoconstrictive properties of the drug itself pos-
sibly  through  inhibition  of  nitric  oxide
Signaling.l70,l73,174

Due to its unique hemodynamic neutrality, an argu-
ment has been advanced for use of etomidate in the
context of vulnerable cerebral perfusion in place of bar-
biturates.'”> However, administration during cerebral
aneurysm clipping procedures and temporary vessel
occlusion has revealed that tissue hypoxia attributable
to etomidate occurs.'®!7® Further, retrospective ana-
lysis of the data from the IHAST trial did not demon-
strate an association between etomidate administration
and neurological outcome following temporary vessel
clipping.'”” Finally, reduced cerebral oxygenation has
been observed following administration of induction
doses of ectomidate administered to patients with
intact cerebral vasculature.'’”® These results suggest
that cerebral vasoconstriction and CBF reduction
mediated by etomidate are not matched by reduction
of CMRO, and the presumption that neuroprotection
arises in ischemic states is questionable.

Dexmedetomidine

Dexmedetomidine (Dex) is a centrally acting o2-
adrenergic agonist that achieves sedation, anxiolysis,
and analgesia without concurrent respiratory
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depression.'”*"'® Dex administered by continuous infu-
sion is used as a primary sedative in the ICU setting or
for procedural sedation and has been found to have
opioid sparing effects when used as an adjunct for intra-
cranial procedures.'®' %% Dex reduces CBF possibly
through direct activation of postsynaptic o2-adrenergic
receptors located on cortical vasculature resulting in
vasoconstriction.'® "7 Clonidine, another o2-adrener-
gic agonist, also reduces CBF.'® In addition, Dex
administration results in a reduction in CMRO,."® In
humans, the reduction in CBF induced by Dex occurs
without producing significant alteration of cerebral
oxygenation.'8¢1%" 11 However, concurrent hypoxia
or systemic hypotension may result in impaired cerebral
oxygenation during Dex administration.'®>!"? These
results raise cause for caution with the use of Dex as
part of an anesthetic for the patient with hemodynamic
instability.

Opioids

As a class, opioids have generally been considered to be
neutral in regards to alteration of CBF and CMRO,.
Studies supporting this belief were generated using low-
resolution detection techniques, such as TCD wherein
flow velocity through the MCA is used as a surrogate
for global CBF without consideration for regional dif-
ferences. High-resolution studies using MRI and PET-
based detection techniques have revealed that regional
CBF is affected by opioids and use of class-wide gen-
eralities may incorrect. Fentanyl administration to
opioid-naive humans has been found to increase regio-
nal CBF in areas of the prefrontal cortex and caud-
ate.'”*'”* Morphine and hydromorphone have been
found to have similar effects.'”>'*® Conversely, sufen-
tanil and remifentanil administration have a biphasic
effect on regional CBF with initial increases at low to
moderate doses (<0.15pg/kg/min remifentanil) fol-
lowed by dose-dependent decreases in CBF and
CMRO; at supratherapeutic doses (>2 pg/kg/min remi-
fentanil) under normocapnic conditions in brain
regions known to be involved in pain processing.'?’ 2%
VMR appears to be intact during remifentanil infu-
sion.””!?%% Alteration of regional CBF has been specu-
lated to be reflective of the mechanisms giving rise to
the analgesic and euphoric properties of the
drugs. 195203

Outcome studies comparing the use of different opi-
oids in conjunction with propofol-based anesthetics
have not revealed a difference in dreaded perioperative
complications attributable to opioid choice. However,
these studies do suggest a more rapid recovery follow-
ing discontinuation of anesthesia when remifentanil is
used, although this effect is likely attributable to remi-
fentanil’s unique pharmacokinetic profile rather than

arising from differences in intraoperative cerebrovascu-
lature dynamics.’** 2% The lack of dreaded complica-
tions observed suggests that the clinical significance of
the alteration of regional CBF induced by different opi-
oids is small or non-existent. Additionally, neuropro-
tective properties have been attributed to opioid
receptor subtype-specific agnonists.?’”>*® It is possible
that this activity arises from preservation of CA and
VMR in the face of ischemic injury.?>*!° In addition,
preclinical data suggest that endogenous opioids may
play a protective role following TBL.>'" However, at
present, no opioid receptor-specific agonist agent has
been evaluated in clinical trials for therapeutic efficacy
in ischemic states or TBI.

An additional point of note is the finding that
administration of the opioid receptor antagonist,
naloxone, has been found to result in decreased
CBF.?!? Naloxone and related opioid receptor antag-
onists have been evaluated in the context of stroke
injury, but efficacy has not been demonstrated.?'* 2!
Neuroprotective properties have been attributed to
naloxone in the context of incomplete spinal cord
injury.?'® This effect may arise from preservation of
blood flow to the spinal cord through alteration of
the expression of mediators of vasogenic tone.”'”'® It
is possible that the CBF alteration and/or induction of
a neuro-protected state that occurs following adminis-
tration of exogenous opioids or opioid receptor antag-
onists arises from competition with endogenous opioids
or alteration of opioid receptor signaling in a subtype
and location-specific fashion.

Benzodiazepines

Benzodiazepines are commonly used to achieve anxio-
lysis, amnesia, and sedation during conscious sedation
and, when administered at high doses, induce general
anesthesia through potentiation of GABA receptors.
Acute administration of benzodiazepines results in
dose-dependent matched reductions in CBF and
CMRO,.?""?* Enhancement of GABAergic activity
seems to generally cause a reduction in CBF as, like
benzodiazepine, the non-benzodiazepine GABA recep-
tor modulator zolpidem has similar effects.”* Studies
assessing the cerebrovascular response to benzodiazep-
ine administration have generally been performed in
healthy volunteers naive to the drug following acute
administration. A single study has investigated the rela-
tionship between chronic benzodiazepine use and CBF
and revealed development of tolerance to the CBF
reduction effects.”** Regional CBF alteration has been
observed with the largest declines in areas of the brain
involved in memory formation, attention, and arousal;
while the location of these changes correlates with the
areas of the brains associated with the clinical effects
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observed following administration of benzodiazepines,
a causal relationship has not yet been established.?*>*%¢
Interestingly, unlike the sedative effects, the reduction
of CBF following midazolam administration is not
reversed by doses of flumazenil, an observation
that may be explained by direct vasoconstriction
mediated by flumazenil ?2”-**® This effect though is con-
troversial as some reports describe a recovery of CBF
following administration of flumazenil following
midazolam.?**?%

Barbiturates

While short-acting barbiturates (e.g. thiopental) are no
longer available for clinical use in the United States, a
discussion on barbiturates is included here for com-
pleteness sake. With the exception of methohexital
use in electroconvulsive therapy, thiopental was the
only barbiturate used to induce and maintain general
anesthesia ~ in  modern  anesthetic  practice.
Unconsciousness occurs secondary to direct activation
and potentiation of the GABA receptor by barbitur-
ate binding.>** Barbiturate administration results in
reduced CBF and CMRO, with preservation of CA
and blunting of VMR.Z'"?** Many studies using
small and large animal models of cerebral ischemia
have demonstrated neuroprotection attributable to bar-
biturate administration.?*> Thiopental has been subject
to many clinical trials aimed at determining if its neu-
roprotective properties are clinically accessible. The
results of these studies have been mixed and if beneficial
affects are present, the timing of thiopental administra-
tion surrounding the onset of ischemia may be cru-
cial.>® Additionally, retrospective analysis of data
generated in the IHAST study demonstrated no associ-
ation between thiopental administration and neuro-
logical outcome.'”’

Lidocaine

While not a general anesthetic agent itself, lidocaine is
often administered during induction of general anesthe-
sia at doses known to effect CBF. Data supporting this
practice come from the observations that lidocaine
administration blunts the pain associated with propofol
injection and limits hemodynamic alteration during
laryngoscopy.>*”**® In humans, a moderate bolus
(0.5mg/kg) of lidocaine increases regional CBF
whereas a large dose (5 mg/mg) results in modest reduc-
tion of CBF and CMRO,.>**?*! In addition, bolus
administration is associated with reduced ICP.*** No
studies exist which have examined the effects of lido-
caine on CBF when administered with other agents
during induction of anesthesia. Studies conducted in
small mammals suggest that lidocaine may have

neuroprotective  properties  during  threatened
CBF.?*2% Lidocaine has been examined in humans
in the context of post-operative cognitive dysfunction
occurrence; these studies have produced conflicting
results, and at this time, no uniform body of evidence
exists to define the clinical utility of the drug in this
context. 4624

Regional anesthesia

As certain blocks alter intracranial sympathetic inputs,
the possibility exists for disruption of CBF secondary
to alteration of incoming supply. While contribution of
the ANS to CBF is controversial, it has been found that
direct stellate ganglion blockade results in a modest
increase in CBF prominent on the side ipsilateral to
the block.?® Interscalene block has been found not to
result in significant change to CBF.*° Interestingly,
afferent inputs during spontaneous movement increase
regional CBF and peripheral regional blocks blunt this

response.25 17253

Conclusions

Regulation of CBF to ensure uninterrupted delivery of
oxygen and nutrients is necessary for the prevention of
irreversible ischemic injury to the brain. Through the
work of pioneers in the field like Dr. Richard J
Traystman, we are beginning to understand not just
how the CBF regulatory mechanisms function but
also how therapeutics interact with these processes.
Clinical studies informed by this understanding are
ongoing. While no single agent has yet been identified
as being the “‘silver bullet” for neuroprotection, there is
cause for hope. Reason for this hope was best expressed
by Dr. Traystman himself when he wrote,

(a)nesthetics have shown neuroprotective potential, but
thus far, no single leader has come forward despite
much research in this area. While it would be easy to
give up looking for an anesthetic neuroprotective agent
considering this poor track record, the lure of the bene-
fit to patients of actually finding a neuroprotective
agent is great. I say, we keep looking and be optimistic.
It is just a matter of time!*>>
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